meeting specifications to establish design values on a statistical basis. - (b) Design values must be chosen to minimize the probability of structural failure due to material variability. Except as provided in paragraph (e) of this section, compliance with this paragraph must be shown by selecting design values that ensure material strength with the following probability: - (1) Where applied loads are eventually distributed through a single member within an assembly, the failure of which would result in loss of structural integrity of the component; 99 percent probability with 95 percent confidence. - (2) For redundant structure, in which the failure of individual elements would result in applied loads being safely distributed to other load carrying members; 90 percent probability with 95 percent confidence. - (c) The effects of temperature on allowable stresses used for design in an essential component or structure must be considered where thermal effects are significant under normal operating conditions. - (d) The design of the structure must minimize the probability of catastrophic fatigue failure, particularly at points of stress concentration. - (e) Design values greater than the guaranteed minimums required by this section may be used where only guaranteed minimum values are normally allowed if a "premium selection" of the material is made in which a specimen of each individual item is tested before use to determine that the actual strength properties of that particular item will equal or exceed those used in design. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR 258, Jan. 9, 1965, as amended by Amdt. 23–23, 43 FR 50592, Oct. 30, 1978; Amdt. 23–45, 58 FR 42163, Aug. 6, 1993] ## §23.619 Special factors. The factor of safety prescribed in §23.303 must be multiplied by the highest pertinent special factors of safety prescribed in §§23.621 through 23.625 for each part of the structure whose strength is— - (a) Uncertain; - (b) Likely to deteriorate in service before normal replacement; or (c) Subject to appreciable variability because of uncertainties in manufacturing processes or inspection methods. [Amdt. 23-7, 34 FR 13091, Aug. 13, 1969] ## §23.621 Casting factors. - (a) General. The factors, tests, and inspections specified in paragraphs (b) through (d) of this section must be applied in addition to those necessary to establish foundry quality control. The inspections must meet approved specifications. Paragraphs (c) and (d) of this section apply to any structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems and do not support structural loads. - (b) Bearing stresses and surfaces. The casting factors specified in paragraphs (c) and (d) of this section— - (1) Need not exceed 1.25 with respect to bearing stresses regardless of the method of inspection used; and - (2) Need not be used with respect to the bearing surfaces of a part whose bearing factor is larger than the applicable casting factor. - (c) Critical castings. For each casting whose failure would preclude continued safe flight and landing of the airplane or result in serious injury to occupants, the following apply: - (1) Each critical casting must either— - (i) Have a casting factor of not less than 1.25 and receive 100 percent inspection by visual, radiographic, and either magnetic particle, penetrant or other approved equivalent non-destructive inspection method; or - (ii) Have a casting factor of not less than 2.0 and receive 100 percent visual inspection and 100 percent approved non-destructive inspection. When an approved quality control procedure is established and an acceptable statistical analysis supports reduction, non-destructive inspection may be reduced from 100 percent, and applied on a sampling basis. - (2) For each critical casting with a casting factor less than 1.50, three sample castings must be static tested and shown to meet— - (i) The strength requirements of $\S23.305$ at an ultimate load corresponding to a casting factor of 1.25; and